skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kapourchali, Mohammad Heidari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 11, 2026
  2. Comprehending the impact of wildfire smoke on photovoltaic (PV) systems is of utmost importance in ensuring the dependability and consistency of power systems, particularly due to the growing prevalence of PV installations and the occurrence of wildfires. Nevertheless, this issue has not received extensive investigation within the current literature. A major obstacle in studying this phenomenon lies in accurately quantifying the impact of smoke. Conventional techniques such as aerosol optical depth (AOD) and PM 2.5 are inadequate for accurately assessing the influence of wildfire smoke on PV systems due to the complex interplay of smoke elevation, dynamics, and nonlinear effects on the solar spectral irradiance. To address this challenge, a new methodology is developed in this research that employs the optical properties of wildfire smoke. This approach utilizes the spectral response (SR) of PV devices to estimate the theoretical reduction in PV power output. The findings of this study enable precise measurement of the power output reduction caused by wildfire smoke for different types of PV cells. This newly devised method can be adopted for power system operation and planning to ensure the stability and reliability of power grids. Additionally, this study highlights the need to consider different PV cell technologies in regions at high risk of wildfires to minimize the power reduction caused by wildfire smoke. 
    more » « less
  3. 100% inverter-based renewable units are becoming more prevalent, introducing new challenges in the protection of microgrids that incorporate these resources. This is particularly due to low fault currents and bidirectional flows. Previous work has studied the protection of microgrids with high penetration of inverter-interfaced distributed generators; however, very few have studied the protection of a 100% inverter-based microgrid. This work proposes machine learning (ML)–based protection solutions using local electrical measurements that consider implementation challenges and effectively combine short-circuit fault detection and type identification. A decision tree method is used to analyze a wide range of fault scenarios. PSCAD/EMTDC simulation environment is used to create a dataset for training and testing the proposed method. The effectiveness of the proposed methods is examined under seven distinct fault types, each featuring varying fault resistance, in a 100% inverter-based microgrid consisting of four inverters. 
    more » « less
  4. Accurate wildfire prediction in diverse and geographically dispersed areas is crucial for effective wildfire management. However, the limited availability of labeled data in data-challenged regions, along with the unique characteristics of these areas, poses challenges for training robust prediction models. This study investigates the performance of a convolutional neural network (CNN) on datasets comprising Landsat images from Canada and Alaska. Through principal component analysis (PCA), the study uncovers distinct differences in data distribution between the two regions. It is observed that the reduced data size of the Alaskan dataset, along with its distinct data distribution, leads to a decrease in the CNN's accuracy to 75% compared to an impressive 98% achieved on the Canadian dataset. To address this limitation, we propose a teacher-student model approach, transferring knowledge from a CNN trained on the larger Canadian dataset. The results demonstrate a significant accuracy improvement to 88.96% on the Alaskan dataset. Our findings highlight the effectiveness of the teacherstudent model in mitigating data scarcity challenges, enhancing wildfire prediction capabilities in regions with limited training data. This research contributes to improved wildfire monitoring and prevention strategies in challenging geographical locations. 
    more » « less